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ABSTRACT

The range estimation problem Is generally solved by

assuming a low order target mass center motion description (such

as constant velocity or constant acceleration) or by postulating

a well defined manuever. Assumptions are often made that

require the receiver signal associated with a well tracked

target to have a narrow bandwidth. These assumptions are

unreasonable for certain range estimation problems. An approach

general enough for use with virtually any pulsed narrowband

transmitter waveform and a variety of finite parameter

descriptions of time varying target range and cross section is

developed. The associated best approximation problem is

nonlinear but has a special structure which permits a computable

solution in applications of interest involving thousands of

unknowns. An Appendix provides an example of estimating a

polynomial propagation delay from observations of the radar

receiver signal. _ _ _ _
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1. INTRODUCTION

One way to extend the capabilities of a radar to targets at

greater range or targets of lower cross section (keeping other

factors constant) is to base parameter estimates on a larger

number of receiver signal samples collected over a longer

1 observation time. Popular observation models might not

adequately describe the observed process over the longer

observation times. For example, when the signal-to-noise ratio

is small, from several seconds to a few minutes of data might be

required in order to perform meaningful parameter estimation.

In this problem many targets do not appear to have the simple

constant velocity or constant acceleration mass center motion

proposed in the literature (Refs. [2], [41, [10), [11]). In

addition, even small target aspect angle change results in

complex dynamics of the observed cross section over the

observation time (Ref. [2]). Accurate models for the observed _..4.

receiver signal over increased time intervals are .

correspondingly complex.

This complexity severely limits the usefulness of an

ordinary "matched filter" receiver. The observation model

should be known exactly except for an unknown amplitude scalar

and unknown constant time delay to design the optimal matched

filter. The model proposed here is considerably more complex.

"-' . .. . ..



One possible approach to estimating the parameters of these

complex time dependent models is to exploit the model's

smoothness. When a sufficient number of observations can be

accumulated in a short enough time, linearizations of the

analytic models for the processes involved adequately describe

the observations. Then a certain notion of optimal estimation

is realized by the "Kalman filter" (Refs. I] p. 36, [6] p.

107).

Unfortunately, as the observation time is increased such

linearizations of smooth models must eventually become

inadequate (Refs. [5], [14]). If the nonlinearities are

structured, then these popular estimators are generalized by

various schemes and are said to be "extended" or "adaptive"

(e.g., Refs. [1] p. 195, [4], [15]). But in these extended and

adaptive forms much of the original optimality of the estimator

is obscured (Ref. [19], p. 25).

Any of the optimal estimators can be arranged as nodes in a

"tree" or "bank" of estimators by discretely parameterizing the

hypotheses under which a particular node of the tree is shown to

be optimal (Refs. [10], [15], [17]). These schemes can be

implemented in a way that preserves the original notion of

optimality. Typically though, a problem arises in choosing the

parameter values which define the nodes of the tree. If too

many nodes are defined the computation time becomes excessive.

2
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If the wrong nodes are defined then good approximations of the

optimal estimates are not obtained.

The notion of minimum norm (or best) approximation is of

great importance in establishing the optimality of estimators.

Instead of contributing to the proliferation of extended and

adaptive techniques, this report examines the problem of best

approximation of the time-varying receiver signal from the

viewpoint of modern computational methods. The resulting

estimator, when interpreted in the least squares sense, is also

the maximum likelihood estimator for a Gaussian estimation

problem.

In this report best approximation techniques are adapted to

solve a general radar surveillance problem. Let r be a vector

in a normed vector space H containing the subset S. A best

A
approximation of r on S is defined as a vector r in S such that r,

lir - r I < Or - ylB for all y in S. The set S consists of

functions which are called ideal receiver signals in this

report. The vector r in the definition is the function whose

values are observed over time in the radar receiver, called the

observed receiver signal in this report.

The ideal receiver signals are constructed from prior

knowledge of the noiseless radar observation process and

are parameterized by functions which characterize the attributes

of the target. Because of modeling errors, hardware factors,

thermal and other noise, an observed receiver signal is

3
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generally not contained in S. Thus the best approximation

problem in this context becomes the problem of choosing the

functions (characterizing the attributes of the target) which X%

minimize the norm of the error between the observed receiver

signal and an ideal receiver signal.

Many schemes involving significantly more assumptions than

those made in this report fit within the general framework which

is to be described. The purpose of this report is to describe .

an estimator which can be implemented to provide a very general

narrowband radar surveillance capability without precluding the

use of other constraints to handle special cases.

First, nonlinear functions are proposed for the ideal

receiver signals. Their form is general enough to approximate

observations of signals having time-varying range and cross

section over extended time intervals. The formulation is kept

general so that any of various popular narrowband transmitter

waveforms could be utilized. The resulting ideal receiver

signals involve time-varying delay and amplitude functions.

The principal problem is to constructively characterize the

best approximation of an observed receiver signal on the set S

of ideal receiver signals. A typical parameterization of S can

involve thousands of variables. Although the best approximation

problem is nonlinear, its special structure exposes a linear

subproblem which can be solved very efficiently on modern '"

4i'
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floating point processors. The solution of the linear

subproblem is used to define two other nonlinear problems which

have the same solution as the principal best approximation

problem. After parameterization, the two nonlinear problems are

of significantly lower dimension than the original problem and

their solution can be approximated numerically in a number of

ways.

J Finally, an Appendix provides some details concerning the

solution of the ordinary least squares approximation problem. ..

In the example it appears that commercial hardware is adequate

for real time implementation of an estimator based on the

techniques developed in this report as part of a target tracking

system for a very general class of targets.
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2. CHARACTERIZATION OF THE SET OF IDEAL RECEIVER SIGNALS

In this section the ideal receiver signals are

characterized as complex valued functions of time. These

functions define the set from which a best approximation of the

observed receiver signal is chosen. By definition, all prior

knowledge concerning the radar observation process should be

utilized. Then it is natural, using other assumptions, to

propose a signal characterization which is different from the

one presented here. The purpose of this section is therefore

restricted to present just one characterization which motivates

• the definition of the approximating functions used in the

discussion of the best approximation problem in Section 3.

So that the discussion does not become academic, the

proposed characterization is designed to be practical for mcstVq
narrowband radar surveillance missions. Because the radar

receiver signal is naturally observed in the time domain, the

signals are characterized as time domain functions. The ideal

signals are also characterized as deterministic, although a

stochastic approach is possible.

Throughout this section, the signals encountered in the

radar and the effects of channel/target modulation are generally

represented by complex valued functions of continuous time. The

usual definitions of pointwise addition and multiplication of

such functions apply. The development of this section closely

follows Fig. 2-1, which associates a signal amplitude at time t

7
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Figure 2-1 The ideal receiver
signal model is derived with a
narrowband assumption.
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with each of several major steps in the radar observation

process.

As usual, each signal is associated with some real

disturbance, such as the electric field at a point in space or a

voltage in the transmitter/receiver. The signal

characterization is derived by supposing that the transmitted

signal x:t * x(t) is transformed by the channel/target into the -

modulated signal m:t 4 m(t). In the receiver at each time t,

m(t) is multiplied by a locally generated signal value v(t).

The resulting signal s:t 4 s(t) has a bandwidth small enough to

permit sampling of the continuous-time functions at low sampling

rates for subsequent digital processing.

2.1 Narrowband Channel/Target Modulation

First the modulated signal m:t 4 m(t) is constructed. In

order to simplify the derivation of the m,'duiated signal a

simple linear channel assumption is used. It is assumed without

loss of generality that, except for a time delay proportional to

the propagation path length, the medium effects are negligible.

Attenuation, polarization, refraction or other medium effects

can be modeled if desired. The additional parameters might be

estimated jointly with other parameters or their values might be

available as prior knowledge.

The value of the modulated signal at a given time t is

obtained from a linear transformation involving a complex valued

9
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range image function a:(e(t), r) - a(e(t), r). The function

N
a:(e(t), r) + a(e(t), r) depends on the relative real range r

and on the value at a time t of the real vector-valued function

8:t + e(t) which determines the aspect of the target relative to

'- the radar line-of-sight. Figure 2-2 illustrates the geometry of

the problem. Define

, m(t) f f a(O(t - T(t)/2 - r/c), r)x(t - T(t) - 2r/c)dr (2.1-1)
t-T(t)/ 2 -r/c

where

R = rla(e(t), r) of. (2.1-2)

The function T:t T T(t) is a real valued function of time. The

value T(t) is usually interpreted as the round trip propagation

time of an imaginary particle traveling at real velocity c and

reaching (at time t) the end of its propagation path. The

propagation path extends from a point in the transmitter (where

x(t) is defined) to a point on the target which corresponds to

one half the path length and back to a point in the receiver

* (where m(t) is defined). This is an idealized nonrelativistic

' argument. The set Rt will be called the range extent of the

- target at time t. After (2.1-1) is accepted as an adequate

representation, the remaining development follows readily.

Suppose that x:t 4 x(t) is Fourier transformable,

specifically that X:w * X(w) exists with

-% .
• %+ , A6



TARGET

2 LINE-OF-SIGHT

Figure 2-2. The effect of target modulation
is obtained from a simple linear
transformation.
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x(t) =fX(w)e iWt dw (2.1-3)
B

where

B - {WX(w) 01. (2.1-4l)

The set B will be called the transmitter bandwidth. In practice

* there will be a bounded set B which is sufficient to adequately

approximate x~t) by (2.1-3).

Using (2.1-3), equation (2.1-1) becomes

m(t) =f a(OB(t - T(t)/2 - n/c), r)
Rt- t) /2-n/c

f X(w)e wt~)ncdwdr. (2.1-5)
B

* Formally interchanging the order of integration yields

m(t) f X(w)eJWt~)

f - -- j 2wn/cfaCO~t -Tt)/2 n/c), r)e drdw

f X w eit t ACO(t), w)dw. (2.1-6)
B

Here the definition

*A~e~t), w) f a~e~t - T(t)/2 - nc), r)ej w/cdr (2.1-7)
R t-(t)/2-n/c

12
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is made to write (2.1-6) In compact form. For each time t,

equation (2.1-7) defines an unnormalized Fourier transformation

of a range domain function.

Suppose that a(t) approximates A(e(t), w) on the set B.

That is there exists a:t a a(t) such that

a(t) = A(e(t), w) (2.1-8)

for w in B and each time t. For each time t, A(e(t), w) is

approximately constant on B. The assumption (2.1-8) is

usually called a narrowband assumption, probably because it is a

useful approximation whenever the transmitter bandwidth B and

the target range extent Rt are appropriately small.

Using (2.1-8), equation (2.1-6) becomes

m(t) da(t)f X(w)e "d
B

a a(t) x (t - ( t)) (2.1-9)

This defines the final form of the modulated signal m:t * m(t).

The result indicates that the modulated signal is approximately

a delayed and amplitude scaled version of the transmitted

signal. The simple form for m(t) is a direct result of the

narrowband assumption and the linear channel assumption, *""

although other arguments may be used to obtain the result

(2.1-9)•-

* ,

13 "%
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Two special cases are of interest where the expression for

m(t) can be given exactly in closed form. If Rt collapses to

{0} (a point target) at each time t then A(e(t), w) does not

depend on w. Then a:t + a(t) exists such that (2.1-8), and

* hence (2.1-9), become exact regardless of the transmitter

bandwidth. Also when B collapses to {W} (continuous wave

transmission) then

m(t) A(e(t), wo)e (2.1-10)

regardless of the target range extent.

2.2 The Ideal Receiver Signal

Having constructed the modulated signal m:t * m(t), the

ideal receiver signal s:t + s(t) is defined by

s(t) = m(t)v(t) =- a(t)x(t - T(t))v(t). (2.2-1) '"

The ideal receiver might have an estimate i of T and set

v(t) = x*(t - T(t)), (2.2-2)

the conjugate of x(t - T(t)), to keep the bandwidth of (2.2-1)

small. Then -'

SWt a(t)x(t -(t))x*(t T(t)). (2.2-3)

It is customary in radar technology to suppose that the

transmitted signal consists of 2N + 1 "pulses" each of time

duration T. Then the transmitted signal x:t * x(t) can be

represented by

14
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Nx(t) I . Pn (t)z~t - nA). (2.2-4) ,::

n--N

Here A is a real constant, the functlon z:t * z(t) characterizes

the signal for a single pulse and

1, -T/2 + nA < t < T/2 + nA (22"
Pn(t) = 2. 2- 5; ..

n0, otherwise.

It is assumed that T << A so that, for example, the sets E n

{tlPn(t) - 01 for -N < n < N are disjoint. That is, the

pulses do not overlap.

Equation (2.2-3) becomes

N
S(t) = a(t)( I pn (t - t(t))z(t - nA - -(t)))

n--N

N
* ( Z p (t - T(t))z*(t - mA - T(t))). (2.2-6) ..

rn-N m

If T(t) = t(t), then the assumption T << A also implies that

Pn(t - I(t))Pm(t - i(t)) = 0 when n * m. With this result,

equation (2.2-6) will simplify to

N
s(t) = a(t) qn (t)z(t - nA - t(t))

n--N

* z*(t - nA - r(t)) (2.2-7)

5- 15
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where

q n(t) -p Pn(t - (t))P n(t - ( ) .(2.2-8) [i

As a practical matter, the simple form (2.2-7) will always be

valid.

The expression (2.2-7) is representative of the ideal

narrowband receiver signal. It provides a concrete example for

further comments in the Appendix related to implementation of

estimators for solving the problems which are dicussed in

Section 3. It also serves to motivate the structure imposed on

the set S of approximating functions for the discussion of the "-

best approximation problem. Using expression (2.2-7), define -

the functions s:(a, T) s(a, T) and s(a, T):t " s(c, T)(t) by

N
s (a, T)Ct) - cit) q n (t)z(t -nA -r~)

z*(t nA - T nt (2.2-9)

Then for each scalar 'a' and function a:t a c(t) and

*:t * 8(t),

16
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N 1

s(aa + B, r)(t) - (am(t) 8(t)) N qn(t)

* z(t - nA - T(t))z*(t nA - (t))

* N
- aa(t) [ qn(t)z(t - nA - T(t))

n--N

N
• z*(t - nA - T(t)) + (t) Z qn(t)

n--N

* z(t - nA - T(t))z*(t - nA - i~t))

- as( , T)(t) + S(0, T)(t). (2.2-10)

That is, the function s:(a, t) * s(a, T) is linear in the first

variable. This linearity property is typical of models for the

ideal receiver signal and is a key property abstracted to the

approximating functions of Section 3 -

Consistent with the stated objectives, the expression

(2.2-7) is a reasonable model for the ideal receiver signal

associated with a large class of targets and radars. The most

restrictive assumption utilized in its derivation is probably

the narrowband assumption (2.1-8). In practice this restriction

constrains the bandwidth occupied by the transmitted signal

x:t 4 x(t). Otherwise any form for x:t 4 x(t) can be used,

including all of the popular phase coded waveforms utilizing

Barker codes (Ref. [20], p. 316) or linear frequency

17
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modulation (Ref. [20], pp. 290, 292). Equation (2.2-7) is

general enough to model virtually all targets, including simple

point targets (Ref. [20], chapter 10) and, at the other extreme,

rotating objects whose dimensions are significant compared to

the wavelength of the transmitted waveform. In the Appendix an *1.

example of particular parametric forms for a:t * a(t),

r:t * T(t) and z:t 4 z(t) is given. For now sufficient

structure has been imposed to discuss the best approximation

problem. ...

'S.°

I S"..,
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3. BEST APPROXIMATION OF AN OBSERVED RECEIVER SIGNAL

The previous section characterizes the ideal receiver "

signals defining the set from which a best approximation of the

observed receiver signal is chosen. In this section the best F.

approximation problem is defined and discussed. First a few

definitions are made to establish the underlying structure for

the problem. The definitions are motivated by the properties of

the characterization of the ideal receiver signals developed in

the previous section but remain general enough to ensure

compatibility with many other characterizations which might be

proposed.

Let H be a Hilbert space of complex valued functions of the

real (time) line with the usual pointwise operations of addition

and scalar multiplication. In the space H the norm is denoted

by 1t 1-1 and the inner product is denoted by <.,.>. Let A be a

subspace of H and let T be some subset of H. Suppose that there

exists a function s:A x T 4 H which abstracts the relevant

properties of the model developed in Section 2. Specifically

s:(a, t) * S(a, T) satisfies the following linearity

Property: s(a + 8, i) - as(a, T) + s(8, T) for all complex

scalars a, a and B in A and T in T. (3.0-1)

This property imposes the required structure for the discussion

of the best approximation of an element of H on the setr

19
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S A {s(a, t)Ic in A, in T1. (3.0-2)

A subset S. of S also plays an important role. The set S.

is defined for each T in T by

S A {s(a, )1a in Al. (3.0-3)

The property (3.0-1) implies that for each T in T, S T is -

a subspace of H. Note also that
I.....-

S U S. (3.0-4)
re T

The element of H which is to be approximated is called the

observed receiver signal, while the approximating set S consists

of elements called ideal receiver signals.

The best approximation of the observed receiver signal r

A
in H on the set S is the ideal receiver signal r in S such that

A

hir - rl < JDr - yll for all y in S. It is customary to consider

the questions (i) when does the best approximation exist, (ii)

when is it unique, and (iii) how is it characterized. The first

two issues are briefly addressed before considering the third,

which is the subject of primary concern to this report. In

particular a constructive characterization is desired, which is

also readily computable in special cases of interest.

0. -
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3.1 Existence and Uniqueness of the Best Approximation

The theory of best approximation is well developed when the

approximating set is a subspace of H. Although many special

cases of nonlinear approximating sets have been considered, it I

appears that a unified theory is lacking (Ref. [18], p. 359).

The most popular nonlinear set in approximation theory is

1 "probably the convex set. It is well known that when the

approximating set is a closed convex subset of H, then the

existence and uniqueness of the best approximation is

guaranteed.

Furthermore, for many parametric best approximation

problems the existence of a unique best approximation is

effectively equivalent to convexity of the approximating set.

This happens when the approximating set is naturally compact.

To see this consider the result attributed to Efimov and Steckin

in Ref. [18], p. 368. This result asserts (in a more general

form) that if for every element r in H there exists a unique

best approximation of r on a compact set S, then S is convex.

It is generally not too restrictive in parametric estimation

theory to suppose that S is the continuous image of a compact

parameter set. Then the compactness of S is guaranteed and the

result of Efimov and Steckin applies. In this case, given the

compactness of S, the existence of a unique best approximation

to an arbitrary element r in H is equivalent to the convexity of

S.

21
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The particular choices of functions s:(a, T) * s(a, T)

which arise in the Appendix are constrained by existing radar

hardware and physical models. As a result, the approximating

set S of functions of the form (2.2-7) is not convex, although

it is easily made compact. Thus, the uniqueness of the best

approximation cannot be guaranteed for arbitrary r in H. The

observation r in H must be structured somehow if the best

approximation problem is to have a unique solution.

A common method is to assume that each r is ultimately of

the form
the

r s +n (3.1-1)

for some s in S and some n in S . The set S is defined by

I
S = Ix in Hi<x, s> = 0 for all s in S1. (3.1-2)

Thus the observed receiver signal consists of an ideal receiver

signal plus an orthogonal error (or noise) function. Now let y

be any element of S. It follows from the Pythagorean property

that

hr - y112 
= hr - s + s - YhI 2 = ind2 + fls - Y112. (3.-3)

Because (3.1-2) implies that 11r - y;I > 'In l whenever y * s it may

be concluded that condition (3.1-1) implies that s is the unique

best approximation of r on S.

22
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There are various devices for imposing the condition

(3.1-1). These often involve spaces of stochastic processes or

random variables. In addition, other geometries can be used to

resolve the existence and uniqueness issues. The specific

devices used in a particular problem are, to some extent, a

matter of personal preference. The detailed structure of an

estimator based on the characterizations of the best :

approximation which follow will ultimately determine how the

existence and uniqueness issues must be resolved.

3.2 Construction of the Best Approximation Li

Four problems are defined in this section. Each one is

either a best approximation problem or is closely related to a

best approximation problem. It is assumed that each problem has

at least one solution.

The best approximation problem of interest is defined by

the

Principal Problem: Given r in H, find a best approximation of r

A A
on S, that is, find a in A and r in T such that

jr - s a, -)II ( r - s(a, T)'l

for all a in A and T in T. (3.2-1)

A A

The function s(a, T) will be called a solution of the principal

problem (3.2-1).

23
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By a well known projection theorem (Ref. [13], page 51) the
A A)S

error r - s(a, ') is orthogonal to the subspace S . In

particular 
i

<r - s(a, T), s(a, T)> = 0. (3.2-2)

The function s:(a, T) * s(a, T) of two variables is

nonlinear (in the second variable). Otherwise many efficient

methods would be available to solve the principal problem. The

first step in solving such a nonlinear problem might be to

reduce the problem to a finite dimensional one. A reduction in

the dimensionality can be accomplished by introducing a finite

dimensional parameterization of the sets A and T. A finite

dimensional parameterization of the set A is a function

f:PA *- A from the finite dimensional set PA onto the set

A. Just as f:PA - A denotes a finite dimensional

parameterization of the set A, let g:PT - T finitely

parameterize the set T.

Then the most obvious numerical solution of the general

nonlinear best approximation problem is to attempt numerical

minimization of 11r - s(a, ') I on PA x PT Alternately,

necessary conditions associated with the optimal solution of the

general problem can be formulated, yielding a new problem. If

?* the original problem has a solution, it is contained in the set

of solutions to the new problem. In special cases, this new

problem obtained from necessary conditions might have a closed

form solution, or it might otherwise be easier to solve than the
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associated with the best approximation problem are
illustrated. Cross-hatched sets are subspaces of H.
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original problem. But when reformulation of the original best

approximation problem leads to another nonlinear problem,

numerical optimization is usually more effectively applied to

the original problem (Ref. [133, p. 271). In any case,

numerical success is elusive when large numbers of variables are

involved.

Instead of solving the principal problem as if it were a

general nonlinear problem, it is advantageous to exploit the

linearity property (3.0-1) to effectively reduce the dimension

of the numerical solution of such problems (Refs. [7], [9],

[16]). In this case the principal problem contains a

Linear Subproblem: Given r in H and T in T, find a best

approximation of r on S.,, that is find aT in A such that

r - , )IT < lr - s(a, T)II

for all a in A. (3.2-3)

The function s(a., i) will be called the solution of the

linear subproblem (3.2-3). In this case, a projection theorem

guarantees that

V

S.'.

.5...
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S

<r s) s(c , T)> - 0. (3.2-4)

The approximating set ST is a subspace of H. Best

approximation on a subspace is a standard linear problem, and

- ~ the linear subproblem can be solved efficiently by a number of

techniques which are not suitable for the general nonlinear

problem. The number of unknowns in the parameterization of A

(the dimension of PA) which can be practically accomodated is

also larger than for a general nonlinear problem. The Appendix

contains additional remarks concerning a closed form solution of

the linear subproblem for a particular example.

In order to use the solution s(T, T) of the linear

subproblem to construct a solution of the principal problem,

define the

Alternate Problem: Given r in H, find T in T such that -

-r " s(,,, r)ll < lr - s(at , ") II

for all T in T. (3.2-5)

A

Thus s( , ) denotes the solution of the alternate problem

(3.2-5).
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A simple inequality chain

ir - s( a , )i _ ir - s (a r ) < lr - s¢a, t)II (3.2-6)

which holds for each a in A and T in T implies that the solution

* of the alternate problem also solves the principal problem.

*. Thus it is possible to construct a solution to the principal .

problem by numerical optimization over T, utilizing the solution

* of the linear subproblem. This is extremely important in

practical applications, as illustrated by the example in the

Appendix, when long observation times are required. In that

example the increase in observation time leads directly to an

increase in the dimensionality of both the nonlinear principal

problem and the linear subproblem, but does not directly

increase the numerical dimensionality of the nonlinear alternate

problem.

The alternate problem is not the only nonlinear optimization

problem over T which also solves the principal problem. Suppose

r in T satisfies

Is a )1 > l a (3.2-7)

for all T in T. The orthogonality condition (3.2-4) permits the

application of the Pythagorean property to both sides of

28
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11r - s(a , -)I, . -1S(1a <, ") (3.2-9)

for all T in T.

Therefore a solution of the alternate problem (and hence the

principal problem) can also be found by solving the

Final Problem: Given r in H, find T in T such that

"."s l ( a^ ; ) I > s1 ( M -E 1 ( 3 2 -1 0 ) - -

WI. 
" 4w.

for all x in T.

Thus it is possible to solve the principal problem by each

of the following methods. "4

1. Solve the alternate problem (3.2-5) by optimization

over T utilizing the solution of the subproblem

(3.2-3).

2. Solve the final problem (3.2-10) by optimization over

T utilizing the solution of the subproblem (3.2-3).

3. Solve the principal problem (3.2-1) by optimization

over T x A.

29
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Because of the linearity, there are many interesting cases where

a closed form solution of the linear subproblem Is easily

computed. One case is discussed in the Appendix. Then by using

methods I or 2 numerical optimization over the set PA of

parameters characterizing A may be avoided. Thus computation

based on methods I or 2 may be considerably faster than

computation based on method 3.

It is possible to restrict the assumptions used in this

report in such a way that ;IS(CT, T)ij becomes the ordinary

"ambiguity function" of radar technology (Ref. [20]). Thus,

is(*', t)~l may be regarded as a generalized ambiguity

function, and the final problem is analogous to numerical

maximization of the ambiguity function. This suggests that when

properly implemented, estimators based on the final problem

will perform at least as well as the canonical radar receivers

associated with the usual ambiguity functions. The e~timator

will produce the same estimate as many of these receivers in

appropriate special cases, but will accomodate significantly

more general target assumptions when necessary.
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• SUMMARY

An appoach to solving the range estimation problem for a

very general class of targets has been presented. The technique

can be applied to virtually any pulsed narrowband system. The

penalty for such generality is that the approach requires the

solution of a nonlinear best approximation problem.

Furthermore, the Appendix presents a least squares application

. where typically hundreds or thousands of parameters are to be

estimated, making a direct numerical solution impractical.

A partitioning of the variables exposes two additional

nonlinear problems with solutions which also solve the original

best approximation problem. Each new problem contains a linear

best approximation subproblem which can be solved in closed form

and efficiently implemented on modern floating point

processors. This effectively reduces the dimension of the

nonlinear problem to the point where, as in an example in the

Appendix, a numerical solution is possible.

The Appendix presents some additional details concerning

the least sq ares solution of the problem. Particular

parameterizations of the transmitter, propagation delay and

amplitude functions yield an example which is particularly

suited to the problem of observing targets at low

signal-to-noise ratios. In this case the long observation time
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required to obtain enough signal energy for meaningful parameter

estimation is associated with relatively complex dynamics of the

observed target cross section.

%%
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APPENDIX

In this appendix the signal characterization of Section 2

is specialized to particular forms typical of a narrowband

' radar. The best approximation concepts of Section 3 are applied

to the least squares approximation of the observed multi-pulse

receiver signal associated with the target.

First particular forms for the sets A and T and the

functions x:t 4 x(t) and v:t + v(t) are chosen. Then a solution

of the linear subproblem (3.2-3) is proposed. As in Section 2,

an informal approach is used in the Appendix, but for

concreteness H can be taken to be L2 ([-1,11). It is easy to

formally adapt the results to a finite dimensional space EK by

sampling continuous time functions. In EK a numerical

solution is possible. A simple estimate of the floating point

computation rate required for the proposed solution suggests

that commercial hardware is adequate to implement an estimation

scheme based on the techniques described in this report as part

of a real-time tracking system.

The set A is defined by assuming that the value of

a:t + a(t) in (2.1-9) is approximately constant over a time

interval corresponding to a transmitter pulse width. Thus A can

be defined by

33
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N
A - ja:t * cs(t)I (t) - . A q (t), A in C1 (A-1) .

n--N

where C is the field of complex numbers and qn:t 4 qn(t) is

defined by (2.2-8). Throughout the remainder it is assumed that F-.

n takes on the integer values between -N and N inclusive.

Definition (A-i) implies the existence of a parameterization

from C 2N+1 onto A.

The propagation time delay due to the mass center motion of

the target relative to the radar is often a smooth function of

time and so, for the sake of argument, define T by

M
A m

T {1:t tIT(t) T t tm  in R1 (A-2)
m-O

where R is the field of real numbers. As with definition (A-i),

definition (A-2) implies the existence of a parameterization

from RM+l onto T. Constraints arising from external force

effects could be included if desired. The additional parameters

might be estimated jointly with other parameters or their values

might be available as prior knowledge.

Define z:t * z(t) by

34
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z(t) e e21J(f nt-bnt 2/2T) (A-3)
p.-

so that the transmitted signal becomes

N 2wj(f (t-nA)-b (t-nA)2 /2T) (A-4) I.
x(t) - p ( t e n n(A4

n--N

from (2.2-4). The change in instantaneous frequency within each

pulse, called the instantaneous bandwidth, is 2 rbn and the

center frequency of the pulse is 2 fffn.

Consistent with (2.2-2) and (A-4), define the receiver's

local oscillator signal v:t * v(t) by

A Nn 27rj(?nt-nA-c )-bn(t-nA-c )2 /2T)v(t) Pn(t - c )e n n n n . (A-5)
n-N

n. N

In order that the bandwidth of s:t * s(t) as given by (2.2-7) be

small, it is sufficient that

n n

.b -bn n

and

c T(nA). (A-6)n./

It is perhaps best to compute fn, bn and c n as a function

of -i:t + T(t), the radar system's estimate of t:t + T(t). -

The expressions (A-4) and (A-5) describe the most general

signals (except for specifying the phase at a given time) that

N can be synthesized by a typical narrowband digital waveform

generator.
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Now the receiver signal s:t *s~t) analogous to (2.2-7)

becomes

N 2w(t)
e~t) -q n(t)A nelT (A-7)

n--N l n. .

where

*()= C c 2 bc/2T -f tr(t) -b T Ct)/2T)n n n n n n

+ f +f b c /T +b rCt)/T)Ct -nA)

n n n n n

( -b n/2T -b n/2T)(t -nA)
2  (A-8)

For the specific forms (A-7) and (A-8) of s:t *s~t) the

linear subproblem (3.2-3) is easy to solve. There is a set

fun(-1):t -*un(T)(t)ln Of orthogonal functions which span

the set ST, of ideal receiver signals. Each

* un(C):t *un(T)(t) is defined by

u CT)(t) q 2nJ~(t (A-9)

and

0(t) ( -f -b T(t)/2T)trt)n n

+ (CF + f + b c /T + b trt)/T)Ct -nA)

n n n n n

+Cb/2T -b /2T)Ct -nA)
2  CA-la)

n n
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The orthogonality follows from the assumption that the product

qn(t)qm(t) is identically zero for all t when n - m. From

(A-7), s:t * s(t) can also be defined by

* NS(t) -Y U n n(T)(t) (A-11) ..'

n--N n.-

where

21rj(7 c "6 c2 /2T)
n ne nn-n n . (A-12)

From (A-11), (A-12) and the definition of S, it is clear that

{un(T)ln spans S.

Then it follows that s(aT, T), the solution of the linear

subproblem (3.2-3) is defined by

N
s(a , T)(t) - u Yu (T)(t) (A-13)

n--N

where

n <r, un ( )>/!'Un(T)112

2irj(-f c -b n c2 /2T)-A e n n n n (A-i 4)

We may formally pass from a space of continuous time

functions to EK by 'sampling' the values of each continuous

function at times tk for k - 1, 2, ... K. Although in general

some caution is required, in this trivial case sampling will not

destroy the orthogonality of the functions un(T). The

definition of inner product required in (A-14) becomes
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<r, u n()> IA K rtk Un(T)(tk (A-15)

and, of course, ..

") iHu ( 1a A <u (T), u (-r)>. (A-16)..
n n n

.I.

Therefore, in EK the closed form solution of the linear

*" subproblem is given by (A-13) and (A-14) using the definitions

(A-15) and (A-16).

As discussed in Section 3, s( , ) is required to solve

the alternate problem (3.2-5) or the final problem (3.2-10) by

numerical optimization over T. Solutions of either of these

problems are shown in Section 3 to be solutions of the principal

problem (3.2-1). With the definition of inner product and norm

given by (A-15) and (A-16), the solution of the principal

problem is called the least squares solution because of the

particular form assumed by the norm of the error r - s(a, ).

In order to estimate the number of real floating point

operations per unit time required to approximate the solution of

the final problem (3.2-10) define

s - number of complex receiver samples per pulse, and

p - number of pulses. Ar
The objective is to maximize (, )I, or equivalently

s (A ., , over T.
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Suppose that sine and cosine evaluations do not require

floating point operations and that s > 10 (so that per-sample

operations dominate per-pulse operations). Then in EK the

computation of Is(,TF T)1!2 requires about (16 + 2M)sp floating

point operations, more or less.

The choice of a numerical optimization algorithm to

maximize (), )j12 over T Is beyond the scope of this

report. Just for purposes of estimating the number of floating

point operations required per unit time, assume that the

algorithm is similar to the Algol procedure presented by Brent

in Ref. [3]. This algorithm optimizes by successive quadratic

approximation. Brent's experience suggests that approximately -

3(M + 1)2 evaluations of TIs( , t)i! are required to compute a

quadratic approximation. Because the transmitted signal

x:t * x(t) and the propagation delay t:t + T(t) are chosen to

make a )II2 a well behaved function of Tm, three

successive quadratic approximations should adequately

approximate the maximum of IIs(a, t)lI. The total computation

cost becomes about 9(16 + 2M)(M + 1)2 sp floating point

operations and Ap time units are avilable for real time

computation. Thus the required rate R is given by

R -9(16 + 2M)(M + 1)sp 9(16 + 2M)(M + 1) 2 S
R (A-17)

a p

floating point operations per unit time.
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Suppose a quadratic target delay was to be estimated in a

system using 16 samples per pulse and .030 second interpulse

periods. Then

R .86(101) (A-i8)

floating point operations per second. Such rates are easily

achieved in modern commerical hardware.

We briefly note that from (A-17) the rate is independent of

the value of p, the number of pulses. Thus to reduce the

variance of estimated quantities it is possible to increase the -a

value of p (assuming other factors remain unchanged) until the

computing system storage is fully utilized. As a practical

matter, a large enough increase in the value of p finally

requires that the value of M also be increased, indirectly

relating the computation rate R to the number of pulses p.
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